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ABSTRACT
There have been great strides in expanding the scope, application,
and versatility of known reaction types (i.e., Mukaiyama aldol). It
is interesting to speculate that limitations in the number of such
known basic reaction types constitute the greatest barrier in the
development of practical processes. The catalytic generation of
transition-metal metalloenolates and alkynilides under conditions
compatible with electrophilic reaction partners provides fresh
avenues for the development of new efficient asymmetric processes
leading to C-C bond formation.

Introduction
The addition reactions of nucleophiles and aldehydes,
ketones, or CdN electrophiles are important processes in
organic synthesis.1 Such addition reactions are intrinsically
efficient in the production of useful building blocks, as a
new stereogenic center and a new carbon-carbon bond
are established in a single operation. The most commonly
employed catalytic, asymmetric carbonyl and imine ad-
dition reactions generally rely on a tried-and-tested set
of nucleophilic reactants such as enolsilanes (i.e., aldol

additions2 and hetero-Diels-Alder cycloadditions3), allyl-
stannanes, -silanes, or -boranes (allylation),4 and dialkyl-
zinc reagents.5 These processes have proven remarkably
effective and enjoy a broad range of applications in the
context of complex molecule construction. Several aspects
of these processes, however, can detract from their utility
and efficiency.6 First, in most of the processes the pre-
scribed starting nucleophile, such as enol silanes, is not
commercially available, and thus preparative applications
of these reactions necessitate their synthesis as a separate
step (Chart 1). Moreover, such nucleophiles are often not
amenable to prolonged storage and must be utilized
shortly after preparation. Second, those nucleophilic
reagents that may be purchased either are pyrophoric
(Me2Zn) or include organoelement moieties (Sn) with
adverse effects on the environment. Third, because the
ultimate end products of a synthesis route rarely incor-
porate silyl, stannyl, or boryl groups, these can be super-
fluous. Because these groups must subsequently be
removed and disposed of, processes in which they are
involved are inherently lacking in atom economy.7

An increasingly important objective in our investiga-
tions in the area of asymmetric synthesis is the discovery
and development of novel processes that utilize readily
available nucleophilic starting materials that do not
require prior preparation and exclude superfluous func-
tionality. Such boundary conditions necessarily impose
strict limits on the types of nucleophilic reactants that can
be considered, namely, ketones, esters, alkenes, and
alkynes (Chart 1). Moreover, the imposition of the bound-
ary conditions outlined above on the starting materials
restricts the reaction types that can be recruited in the
development of novel processes; in this respect, reliance
on traditional, commonly employed Lewis acid activation
strategies may no longer suffice.

In this Account, we present some of the recent work
that has been reported from our laboratories involving the
identification of novel mechanistic constructs for the
subsequent development of practical, asymmetric C-C
bond-forming reactions. Our work on the nucleophilic
activation of enol silanes by chiral bis-phosphine×e1‚CuF
complexes for catalytic, enantioselective aldol addition
reactions led us to search for other latent nucleophiles
amenable to activation toward CdO and CdN additions.
This has resulted in the discovery of a novel process for
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the catalytic generation of zinc acetylides under mild
conditions. Although the chemistry has only been studied
recently, we provide ample evidence that attests to the
versatility and utility of this method in catalytic and
asymmetric synthesis.

Background
In 1994, we reported a catalytic, enantioselective aldol
addition reaction that affords acetate aldol and acetoac-
etate adducts in high yield and enantioselectivity (eqs 1
and 2).8,9 The salient features of this process remain (1)
low catalyst loads (0.2-5 mol %), (2) high enantioselec-
tivity (up to 99.8% ee), (3) broad substrate tolerance
(aliphatic, aromatic, unsaturated aldehydes), (4) ease of
execution (0 °C, Et2O, 2-6 h), and (5) availability of catalyst
(two steps).

These addition reactions, along with those that have
been reported by other laboratories,2 followed the mecha-
nistic construct, or reactivity mode, discovered, studied,
and espoused by Mukaiyama in 1974.10 The mechanistic
fundamental at the core of this reaction process is the
activation of the electrophilic reacting partner, most
commonly the aldehyde, ketone, or imine, through its
coordination to a Lewis acidic transition-metal complex.11

The fact that the reaction involves Si atom transfer in
proceeding from the starting O-silyl enolate to the O-silyl
ether product allowed for its subsequent evolution and
ultimate development into a myriad of catalytic asym-
metric versions. The mechanistic studies and models that
have been proposed by a number of researchers under-
score the electrophilic activation aspect of the reaction
and generally exclude interaction between enolsilane and
the activated electrophilic species.9b,12 Indeed, these reac-
tions are often characterized as proceeding through open,
extended transition states.13

In the context of our work on the identification and
development of novel Lewis acid catalysts for the Muki-
ayama aldol addition reaction, we documented the cata-
lytic, enantioselective reaction of 2-methoxypropene (3)
in aldehyde addition reactions (eq 3).14 In this process,

we noted that the 2-methoxypropene functioned as an
enolate equivalent, which following workup could provide
access to the acetone 5, hydroxyacetone, or acetate aldol
adducts. In the development of this process, we became
keenly aware that the ability to use the commercially
available 2-methoxypropene as the nucleophilic partner
imparted a critical advantage to the process: in particular,
in contrast to enolsilane nucleophiles ubiquitously em-
ployed in Mukaiyama aldol addition reactions, methoxy-
propene required no prior preparation in the laboratory.
This aspect seemed to us particularly attractive and took
special significance in our subsequent focus on the
development and discovery of practical processes for
catalytic CdO and CdN addition reactions. However,
despite the appeal of such ready processes utilizing
commercially available nucleophiles, our ability to further
identify new reactivity paradigms and subsequently imple-
ment these in new processes for C-C bond formation was
limited by the lack of other reactive nucleophiles for
aldehyde addition reactions that met the boundary condi-
tions we had set for ourselves. This prompted us to search
for new mechanistic/reactivity modes for the development
of novel, efficient C-C bond-forming reactions.

Identification of Novel Mechanistic Options
As discussed above, the majority of approaches to the
asymmetric catalytic aldol addition reaction reported to
date involve the use of chiral Lewis acids that activate the
aldehyde component toward addition by enol silanes.2,15,16

In contrast, the development and study of catalytic
processes that recursively generate metalloenolates which
participate in asymmetric addition to aldehydes has been
limited.17,18 This concept, however, has recently begun to
receive increasing attention, as it offers unique opportuni-
ties for the development of catalytic C-C bond-forming
reactions lacking precedence. The processes that have
been reported to proceed through putative enolate-metal
complexes can be categorized according to the method
by which the reactive metalloenolate is produced: (1)
deprotonation of a C-H acid and (2) desilylative meta-
lation of an enol silane. Examples of the former processes
have been documented with C-H acids with pKa < 20.18,19

These include the classic addition reaction of Hayashi and
Ito involving isonitrileacetate esters in the presence of
chiral Au‚bisphosphine complexes18b and, more recently,
the nitroalkane and ketone addition reactions mediated
by Ln‚binaphthoxide catalysts.19 The catalytic generation
of functional metalloenolate intermediates from enol
silanes enjoys less precedence; however, several recent
examples have been reported in the context of catalytic
asymmetric synthesis.20,21

(1)

(2)

(3)
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We have documented a new reaction process for the
aldol addition reaction of enolsilanes and aldehydes
utilizing bisphosphine‚CuF (6), bisphosphine‚CuF2, or
bisphosphine‚Cu(OtBu) as catalyst (eq 4).21 Importantly,
we have suggested that the reaction process appears to
proceed through a mechanistic construct involving cata-
lytic generation of a chiral metal dienolate initiated by the
reaction of the enol silane with the transition metal
fluoride or tert-butoxide complex.22 The active complex
is generated readily in situ under a variety of conditions
upon mixing (S)-Tol-BINAP23 with either Cu(OTf) or Cu-
(OTf)2, and (Bu4N)Ph3SiF2 (TBAT) or Cu(OtBu). For a range
of aldehydes, the adducts are isolated in useful yields and
up to 95% ee utilizing typically as little as 2 mol % catalyst.
Moreover, the reaction may be conducted on a preparative
multigram scale utilizing as little as 0.5 mol % catalyst
without deleterious effects on the product enantiomeric
excess or yields.24 In a series of mechanistic studies, we
have accumulated data that are consistent with the
reaction proceeding through a metalloenolate intermedi-
ate. This work, along with the reactions reported recently
by Shibasaki, contrasts with the majority of processes that
have been reported to date and provides a conceptual and
practical alternative to the well-established Lewis acid-
promoted stereoselective aldol reactions.

Our work involving 2-methoxypropene as a useful,
readily available nucleophile for aldehyde addition reac-
tions coupled with the subsequent study of aldol addition
reactions involving nucleophilic activation of enol silanes
led us subsequently to search for new transformations that
would constitute a hybrid of these two processes incor-
porating readily available nucleophiles amenable to ac-
tivation in situ. As discussed above, these boundary
conditions limit the selection of potential nucleophiles to
most common functional group classes including nitroal-
kanes, ketones, alkenes, and alkynes. The in situ genera-
tion of nucleophilic enolates derived from ketones and
nitro alkanes for catalytic, enantioselective aldehyde ad-
dition reactions has been documented in a series of
elegant, pioneering studies by Shibasaki. The use of
alkenes as reactants in ene-like addition reactions to
aldehydes has been the subject of extensive studies by
Mikami and Nakai,25 and more recently by Evans,26 both
involving Lewis acid activation of the aldehyde. In con-
trast, the use of terminal alkynes directly in CdO and Cd

N addition reactions had little precedence and constitutes
the area upon which we chose to focus our efforts.

Terminal Acetylenes in CdX Addition
Reactions
The use of metalated terminal alkynes as nucleophiles for
C-C bond formation is well appreciated.27 Metalated
acetylenes participate in Pd0-catalyzed C(sp)-C(sp) and
C(sp)-C(sp2) couplings, a transformation at the core of
modern synthesis.28 The carbanionic acetylides derived
from alkali or alkaline earth metals are known to undergo
additions to a wide range of electrophiles (such as
aldehydes, imines, epoxides, acid chlorides) to furnish
adducts of great synthetic versatility.29 The reactive alky-
nilides that are generally utilized, however, are commonly
prepared from a terminal alkyne and strong bases such
as carbanions (BuLi,30 EtMgBr,31 Me2Zn32), metalated
amides (KHMDS, LDA, Et2NLi), alkoxides (potassium tert-
butoxide), and hydroxides (KOH, CsOH).33 Because the
electrophiles used in combination with metalated terminal
alkynes are incompatible with the strong bases that have
been traditionally utilized in the generation of the corre-
sponding acetylide, in general, alkyne deprotonation must
be necessarily carried out as a separate step. We surmised
that the ability to carry out nucleophilic additions of
terminal alkynes to CdO or CdN without the use of such
pyrophoric, stoichiometric bases would lead to great
simplification of the processes. The successful implemen-
tation of such a concept, however, demanded that we
identify a mild process for the in situ generation of metal
acetylides that would participate in reactions involving
nucleophilic addition to CdO and CdN electrophiles.

Our initial exploration into this area looked to the
known chemistry of Cu(I) or Ag(I) salts and acetylenes in
the presence of amine bases. It is generally accepted that
complexation of terminal acetylenes with Cu(I) or Ag(I)
yields π-complexes. These complexes labilize the terminal
C(sp)-H so that even weakly basic amines can effect
deprotonation with concomitant generation of the cor-
responding metal alkynilide.34 Although the use of such
copper acetylides in Pd-mediated coupling reactions is
well precedented (for example, Sonogashira, Eglington,
Glaser, and Cadiot-Chodkiewicz coupling reactions), the
ability of copper acetylides generated under such condi-
tions to participate in additions to aldehydes as a general
method has not been documented.35 Following an ex-
panded screening of metal salts, we observed that Zn-
(OTf)2 in combination with tertiary amine bases leads to
the generation of the corresponding zinc acetylide. Im-
portantly, unlike acetylides derived from Cu(I) or Ag(I),
zinc acetylides were observed to add to aldehydes, ke-
tones, and nitrones (Scheme 1).

A number of spectroscopic observations (1H and 13C
NMR along with IR) are consistent with the hypothesis
we have posited that, in the presence of Zn(OTf)2 and
amine bases, a zinc alkynilide is formed in situ in analogy
to the known chemistry of terminal alkynes with Cu(I) or
Ag(I) salts (eq 5). For example, in 13C NMR spectroscopic

(4)

(5)
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studies, we have witnessed that treatment of 4-phenyl-1-
butyne with iPr2NEt and Zn(OTf)2 at 23 °C leads to large,
characteristic shifts of the resonances corresponding to
the sp-hybridized carbons.36 Particularly compelling evi-
dence for the in situ formation of a zinc acetylide was
found through a series of experiments involving infrared
spectroscopy. Thus, we have observed that, for a broad
range of acetylenes, treatment with base (Et3N, iPr2NEt,
N-methylmorpholine, 1,2,2,6,6-pentamethylpiperidine) and
Zn(OTf)2 leads to complete disappearance of the C-H
stretch (3275 cm-1) within 2-5 min. We have also dem-
onstrated that the metalation process is reversible. Thus,
following the observed disappearance of the acetylene
C-H resonance, when the same mixture was treated with
triflic acid, resurgence of the IR signal corresponding to
the C-H stretch of the terminal acetylene was observed.
Collectively these experiments are consistent with the
mechanistic scheme we have proposed as a working
model wherein a zinc acetylide is generated in situ. It is
interesting to speculate that the formation of the zinc
acetylide may proceed through a hydrogen-bonded σ-com-
plex which undergoes tautomerization to the hydrogen-
bonded π-complex (Scheme 2). In this regard, ample

precedence may be found for such hydrogen-bonded
structures involving acetylenes as H-bond acceptors and
H-bond donors.37

Asymmetric Addition of Zinc Acetylides to
Aldehydes
Having identified a mild, new method that allows the in
situ catalytic generation of reactive zinc acetylides, we
proceeded to examine whether such a process could be
successfully employed in practical and useful asymmetric
additions to CdO and CdN electrophiles. We first focused
on enantioselective additions of terminal acetylenes to
aldehydes to furnish propargylic alcohols. The method-
ologies which have been devised for the asymmetric

Table 1. Enantioselective Aldehyde AdditionsScheme 1

Scheme 2
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synthesis of optically active propargylic alcohols involve
either nucleophilic addition of metalated acetylenes to
aldehydes or ynone reduction.38-42 Catalytic, enantiose-
lective ynone reduction methods have been reported by
Noyori and Corey employing chiral ruthenium complexes
and oxazaborolidines as catalysts, respectively. The second
general approach is exemplified by the oxazaborolidine-
catalyzed enantioselective addition of alkynylboranes to
aldehydes.43 The latter method can have an intrinsic
synthetic advantage over ynone reduction methods.44 This
can be appreciated when it is considered that in the latter
reaction a new C-C bond is formed with concomitant
generation of a stereogenic center in a single transforma-
tion, whereas in the former process the C-C bond and
the stereogenic center are formed separately.

We have observed that aldehyde addition reactions can
be conducted in the presence of optically active amino
alcohols to give adducts enantioselectively. Of those
ligands screened, N-methylephedrine (≈$3/g) has proven
most effective.45 Thus, in the presence of Zn(OTf)2, amine
base, and (+)-N-methylephedrine (8) terminal acetylenes
are observed to undergo additions to aldehydes, furnishing
adducts 9 in up to 99% ee in good yields (eq 6, Table 1).46

As can be appreciated from the examples shown, the Zn-

(II)-mediated reaction displays much tolerance toward
functionality in both the starting aldehyde and alkyne.
Importantly, following completion of the reaction, simple
aqueous extraction allows the separation of (+)-N-meth-
ylephedrine ligand from the desired adducts and subse-
quent recovery for reuse.

We have investigated the effect of various experimental
parameters, such as substrate concentration, solvent, sol-
vent quality, and the presence of air, on the product selec-
tivity and yield. Over the 10-fold range of aldehyde con-
centrations (0.1-1.0 M) that we have investigated, the
optical purity of the adducts remains unchanged. Interest-
ingly, the use of CH2Cl2 instead of toluene results in only
small decreases (2%) in enantioselectivity; however, the
use of THF leads to diminution of the optical purity of
the adducts by 10-15%. Additional experiments have re-
vealed that the enantioselective aldehyde reaction is toler-
ant of moisture and oxygen, allowing the additions to be
conducted with reagent grade solvent (≈300 ppm Η2Ã)
under an atmosphere of air (Scheme 3). The fact that the
reaction does not need to be conducted under inert atmo-
sphere is a feature that sharply contrasts the reaction con-
ditions typically prescribed in enantioselective organozinc
additions to aldehydes. The pyrophoric nature of the
organozinc reagents (i.e., Me2Zn, Et2Zn) utilized in such
additions precludes exposure to oxygen or moisture.47

We anticipate that additional studies should provide
important insight into the structure of the reactive species

and pertinent intermediates that will lead to the develop-
ment into a catalytic process.48 The fact that reactive metal
acetylide complexes can be generated under mild condi-
tions and that these participate in enantioselective addi-
tions in the presence of inexpensive ligands offers new
opportunities for the development of other useful asym-
metric processes, such as epoxide opening, conjugate
additions, and imine additions.

Catalytic Acetylide Additions to N-Benzyl
Nitrones
Addition reactions of carbanions to CdN electrophiles can
be an efficient, practical route to optically active propar-
gylic amines and their derivatives. In an effort to inves-
tigate new electrophile classes for CdN bond additions,
we have examined nitrones. There are some unique
aspects of nitrones and their adducts that have captivated
our attention: (1) nitrones are trivially prepared (RCHO
+ RNHOH); (2) nitrones are typically crystalline materials
which are stable and easily purified; and (3) the propar-
gylic hydroxylamine adducts provide entry to a large
number of useful, versatile synthetic building blocks,
including amines, amino ketones, amino acids, and isox-
azolines.49 Moreover, in comparison to aldehydes and
aldimines, the use of nitrones as electrophiles in catalytic
C-C bond-forming processes has not been extensively
investigated.50

We have observed that the combination of Zn(OTf)2

and a tertiary amine base allows for the rapid addition of
terminal acetylenes to N-benzyl nitrones at room tem-
perature. Upon further study and optimization of the

reaction conditions, we realized that the reaction proceeds
quite well with catalytic amounts of Zn(OTf)2 and amine
base to afford N-hydroxylamine adducts 10 in prepara-
tively useful yields (up to 99%) (eq 7 and Chart 2).51 As

(6)

Scheme 3

(7)
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shown in Chart 2 and Figure 1, the addition reactions are
quite general for a broad range of nitrones and terminal
acetylenes.

The potential of this methodology in asymmetric
catalytic synthesis is exemplified by experiments which
suggest that the process can be diastereoselective or
enantioselective through the use of a chiral auxiliary on
the nitrone or a chiral ligand with Zn(II). Thus, for
example, the addition of iPr3SiCtC-H to nitrone 11,
prepared from isobutyraldehyde and (()-4-phenyl-4-(N-
hydroxylamino)butane, afforded adducts as an 88:12
mixture of diastereomers (eq 8).52 In a complementary
fashion, the addition of 4-phenylbutyne to C-isopropyl
N-benzyl nitrone in the presence of catalytic amounts of
Zn(OTf)2 and chiral bisoxazoline 12 as a ligand for Zn(II)
furnished adduct 13 in 88% ee and 85% yield (eq 9).

Although much work remains to be carried out to
delineate the mechanistic details of the catalytic process,
in Figure 1 we illustrate our working model. In analogy
to the Ag(I) and Cu(I) chemistry we hypothesize that Zn-
(II) forms a π-complex with the terminal acetylene,
thereby acidifying the terminal C(sp)-H bond. The amine
base subsequently participates in a proton abstraction to
deliver the corresponding zinc acetylide 13. Following

addition of the metalated alkynilide, the adduct undergoes
protonation by either the trialkylammonium hydrotriflate
or the starting terminal acetylene to provide Zn(II).

Conclusion
We have discussed our developments in the field of
asymmetric CdO and CdN addition reactions. Our initial
studies involving metal-mediated activation of enol silanes
to generate catalytic aldol addition reaction involving
metalloenolate intermediates led to the indentification of
a little-used mechanistic construct for CdO and CdN
additions, namely activation of the nucleophilic compo-
nent. In developing this conceptual framework further, we
have identified a novel reaction chemistry of acetylenes
that allows for the in situ generation of the corresponding
carbanion under mild conditions. The addition reactions
to aldehydes in the presence of N-methylephedrine were
shown to be highly enantioselective and efficient. More
importantly, exploratory work has revealed that the car-
banionic zinc acetylide generated in situ possesses un-
usual, remarkable tolerance to moisture and oxygen,
providing a practical and efficient method for the prepa-
ration of optically active propargylic alcohols. We have
also discussed the catalytic additions to nitrones which
provide useful products in the form of propargylic hy-
droxylamines.

Organic chemists have displayed great ingenuity in the
preparation of novel reagents that expand the scope,
application, and versatility of known reaction types (i.e.,
the Mukaiyama aldol reaction). However, it is interesting
to speculate that it is the limitations in the number of such
known chemical reaction types that constitute the greatest
barrier in the development of truly practical reaction
processes. The catalytic generation of reactive transition-
metal metalloenolates and alkynilides from the corre-
sponding terminal alkyne under conditions that are
compatible with electrophilic reaction partners provides
fresh avenues for the development of new, efficient
asymmetric processes leading to C-C bond formation.
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